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1 Introduction

The capacity plays a very important role in the study of the potential theory which becomes an
extensive domain of research rich in ideas and methods applied in our time in mathematics and
physics, particularly in function theory, functional analysis, probability theory, approximation
theory and harmonic analysis.

The theory of capacity and non-linear potential in the classical Lebesgue space Lp(Ω), was
mainly studied in Maz’ya & Khavin (1972) and Meyers (1970). These authors in their previous
works have introduced the concept of capacity and non-linear potential in these spaces and
provided very rich applications in functional analysis, harmonic analysis and in the theory of
partial differential equations.

This notion was generalized to Orlicz spaces by Aissaoui & Benkirane (1994), to Musielak-
Orlicz spaces by Hassib et al. (2017) and to the weighted variable exponent Sobolev spaces
by Ismail (2012). Thus, the first goal of this paper we gives and prove some proprieties of the
Cp(.),ω capacity in the setting of the weighted variable exponent Sobolev spaces defined by Ismail
(2012). As an application we generalize the theorem of Browder F.F by Browder F.E. in the
setting of the weighted variable exponent Sobolev space, which extends the previous result of
Brezis & Browder (1982), and we make an application to an unilateral problem.
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2 Preliminary

2.1 Variable Exponent Lebesgue and Sobolev Spaces.

Let Ω be a bounded open subset of IRN (N ≥ 2),

C+(Ω) = {continuous function p(·) : Ω −→ IR such that 1 < p− 6 p(x) 6 p+ 6 N},

where
p− = min{p(x) / x ∈ Ω} and p+ = max{p(x) / x ∈ Ω}.

We define the variable exponent Lebesgue space for p(·) ∈ C+(Ω) by

Lp(x)(Ω) = {u : Ω −→ IR measurable /

∫
Ω
|u(x)|p(x) dx <∞}.

The space Lp(x)(Ω) under the norm

‖u‖p(x) = inf

{
λ > 0,

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}

is a uniformly convex Banach space, and therefore reflexive. We denote by Lp
′(x)(Ω) the

conjugate space of Lp(x)(Ω) where
1

p(x)
+

1

p′(x)
= 1 (see Zhao et al (1997)).

Proposition 1. (see Zhikov (2004), Zhao et al (1997))
If we denote

ρ(u) =

∫
Ω
|u|p(x) dx ∀u ∈ Lp(x)(Ω),

then, the following assertions holds
(i) ‖u‖p(x) < 1 (resp,= 1, > 1) ⇐⇒ ρ(u) < 1 (resp, = 1, > 1),
(ii) ‖u‖p(x) > 1 ⇒ ‖u‖p−p(x) ≤ ρ(u) ≤ ‖u‖p+

p(x) ,

(iii) ‖u‖p(x) < 1 ⇒ ‖u‖p+

p(x) ≤ ρ(u) ≤ ‖u‖p−p(x),

(iv) ‖un‖p(x) → 0 ⇔ ρ(un)→ 0 and ‖un‖p(x) →∞ ⇔ ρ(un)→∞.

Now, we define the variable exponent Sobolev space by

W 1,p(x)(Ω) = { u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)},

normed by
‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) ∀u ∈W 1,p(x)(Ω).

Where ∇u = (
∂u

∂x1
;
∂u

∂x2
; ........;

∂u

∂xN
).

2.2 The weighted variable exponents Lebesgue and Sobolev spaces.

Let Ω be a bounded open subset of IRN , N ≥ 2 , set

C+(Ω) = {p ∈ C(Ω) : min
x∈Ω

p(x) > 1},

For all p ∈ C+(Ω), we define p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

We say that p(.) is log-Hölder continuous in Ω if

|p(x)− p(y)| ≤ C

|log|x− y||
∀x, y ∈ Ω such that |x− y| < 1

2
,
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We denote by P log(Ω) the class of variable exponents which are log-Hölder continuous in Ω.
Let ω be a function defined in Ω, ω is called a weight function in Ω if she is measurable and

strictly positive a.e. in Ω.
Let p ∈ C+(Ω) and ω be a weighted function in Ω. The weighted variable exponents Lebesgue
space Lp(x)(Ω, ω), consists of all real valued functions such that

u : Ω→ IR,measurable and

∫
Ω
ω(x)|u|p(x)dx <∞

ie

Lp(x)(Ω, ω) = {u : Ω→ IR,measurable :

∫
Ω
ω(x)|u|p(x)dx <∞},

provided with the Luxemburg norm

‖u‖Lp(x)(Ω,ω) = inf
{
µ > 0 :

∫
Ω
ω(x)|u(x)

µ
|p(x)dx ≤ 1

}
Lp(x)(Ω, ω) is a reflexive Banach space.

Lemma 1. Kovacik & Rakonsik (1991) For all function u ∈ Lp(x)(Ω, ω), we denoted

ρΩ,ω(u) =

∫
Ω
ω(x)|u|p(x)dx.

Then
(i) ρΩ,ω(u) > 1 (= 1;< 1)⇔ ‖u‖Lp(x)(Ω,ω) > 1 (= 1;< 1), respectively.

(ii) If ‖u‖Lp(x)(Ω,ω) > 1 then ‖u‖p−
Lp(x)(Ω,ω)

≤ ρΩ,ω(u) ≤ ‖u‖p
+

Lp(x)(Ω,ω)
.

(iii) If ‖u‖Lp(x)(Ω,ω) < 1 then ‖u‖p
+

Lp(x)(Ω,ω)
≤ ρΩ,ω(u) ≤ ‖u‖p−

Lp(x)(Ω,ω)
.

We define the weighted variable exponents Sobolev space by

W 1,p(x)(Ω, ω) =

{
u ∈ Lp(x)(Ω) :

∂u

∂xi
∈ Lp(x)(Ω, ω), i = 1, ..., N

}
,

provided with the norme

‖u‖W 1,p(x)(Ω,ω) = ‖u‖Lp(x)(Ω) +
N∑
i=1

‖ ∂u
∂xi
‖Lp(x)(Ω,ω)

which is equivalent to the Luxemburg norme

|||u||| = inf

{
µ > 0 :

∫
Ω

(
|u
µ
|p(x) + ω(x)

N∑
i=1

|
∂u
∂xi

µ
|p(x)

)
dx ≤ 1

}
.

Let ω a weight function such that the following conditions:

(w1) ω ∈ L1
loc(Ω) and ω

−1
p(x)−1 ∈ L1

loc(Ω);

(w2) ω−s(x) ∈ L1(Ω, ω) with s(x) ∈
( N

p(x)
,∞
)
∩ [

1

p(x)− 1
,∞
)
.

Remark 1. Kovacik & Rakonsik (1991)
• Let ω be a positive measurable and finite function such the condition (w1) holds. Then the

space
(
W 1,p(x)(Ω, ω), ‖.‖W 1,p(x)(Ω,ω)

)
is a reflexive Banach space.

• If (w1) holds, then W 1,p(x)(Ω, ω)is a reflexive Banach space and C∞0 (Ω) ⊂W 1,p(x)(Ω, ω).

• The dual of the weighted Sobololev space W
1,p(x)
0 (Ω, ω) is equivalent to W

−1,p′(x)
0 (Ω, ω∗),

where ω∗ = ω1−p′(x) and p′(x) =
p(x)

p(x)− 1
.
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Remark 2. Kovacik & Rakonsik (1991) If we set

ρ1
(Ω, ω)(u) =

∫
Ω
|u|p(x) + ω(x)|∇u|p(x)dx ∀u ∈W 1,p(x)(Ω, ω)

We have

min(‖u‖p−
W 1,p(x)(Ω,ω)

, ‖u‖p+
W 1,p(x)(Ω,ω)

) 6 ρ1
(Ω, ω)(u) 6 max(‖u‖p−

W 1,p(x)(Ω,ω)
, ‖u‖p+

W 1,p(x)(Ω,ω)
).

Definition 1. Diening & Hasto (2008) Let p ∈ C+(Ω). The class Ap(.) consists of those
weight ω for which

sup
B∈B
|B|−pB ||ω||L1(B)||

1

ω
||
L
p′(.)
p(.)

<∞,

where B denotes the set of balls in RN , pB =
( 1

|B|

∫
B

1

p(x)

)−1

Theorem 1. Ismail (2012) Let p(.) ∈ P log(RN ), 1 < p− 6 p+ < ∞, and ω ∈ Ap(.). Then

C∞0 (RN ) is dense in W 1,p(x)(RN , ω).

In the following ω is a positive measurable and finite function which satisfies the condition
(w1).
The following Lemma can be proved similarly in Lemma 2.4 of Benkirane et al. (2013).

Lemma 2. Let u ∈W 1,p(x)
0 (Ω, ω). There existe a sequence un such that:

(i) un ∈W 1,p(x)
0 (Ω, ω) ∩ L∞(Ω),

(ii) supp un is compact,
(iii) |un| 6 |u| a.e. in Ω,

(iv) un −→ u in W
1,p(x)
0 (Ω, ω),

(v) unu > 0 a.e. in Ω .

2.3 Capacity

Definitions 1. Let T the classe of Borel sets in RN , and a function C : T → [0,+∞].
1) C is called capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) 6 C(Y ), for all X and Y in T.
iii) For all sequences (Xn) ⊂ T :

C(
⋃
n

Xn) 6
∑
n

C(Xn).

2) C is called outer capacity if for all X ∈ T :

C(X) = inf{C(O) : O ⊃ X, O open}.

3) C is called an interior capacity if for all X ∈ T :

C(X) = sup{C(K) : K ⊂ X, K compact}.

4) A property, that holds true except perhaps on a set of capacity zero, is said to be true C-
quasi-everywhere, ( abbreviated C-q.e).
5) f and (fn) are real-valued finite functions C-q.e. We say that (fn) converges to f in
C-capacity if:

∀ε > 0, lim
n→+∞

C({x : |fn(x)− f(x)| > ε}) = 0.
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6) f and (fn) are real-valued finite functions C-q.e. We say that (fn) converges to f C-quasi-
uniformly, (abbreviated C-q.u) if :

(∀ε > 0), (∃ X ∈ T ) : C(X) < ε and (fn) converges to f uniformly on Xc.

Propositions 1. Ismail (2012) For E ⊂ RN , we denote

Sp(.),ω(E) = {u ∈W 1,p(x)(RN , ω) : u > 1 on an open set containing E}.

The Sobolev (p(.), ω)-capacity of E is defined by

Cp(.),ω(E) = inf
u∈Sp(.),ω(E)

ρ1,p(.),ω(u) = inf
u∈Sp(.),ω(E)

∫
Ω
|u(x)|p(x) + |∇u(x)|p(x)ω(x)dx.

In case Sp(.),ω(E) = ∅, we set Cp(.),ω(E) =∞. The Cp(.),ω-capacity has the following proprieties.
(i) Cp(.),ω(∅) = 0.
(ii) X ⊂ Y ⇒ Cp(.),ω(X) 6 Cp(.),ω(Y ),

(iii) For all sequences Xn ⊂ RN :

Cp(.),ω(
⋃
n

Xn) 6
∑
n

Cp(.),ω(Xn). (1)

(i∨) For all X ⊂ RN :

Cp(.),ω(X) = inf{Cp(.),ω(O) : O ⊃ X, O open}. (2)

(∨) For all X ⊂ RN

Cp(.),ω(X) = sup{Cp(.),ω(K) : K ⊂ X, K compact}. (3)

(∨i) If there exists f ∈W 1,p(x)(RN , ω) such that f = +∞ on E then,

Cp(.),ω(E) = 0 (4)

(∨ii) If (Xn) is an increasing sequence of sets and X =
⋃
n

Xn, then

lim
n→+∞

Cp(.),ω(Xn) = Cp(.),ω(X). (5)

(∨iii)If X and Y are subset of RN , then

Cp(.),ω(X ∪ Y ) + Cp(.),ω(X ∩ Y ) 6 Cp(.),ω(X) + Cp(.),ω(Y ). (6)

Lemma 3. Ismail (2012)

If ω(x) > 1 for all x ∈ RN , then every measurable set X ⊂ RN satisfies

|X| 6 Cp(.),ω(X), (7)

where |X| is the lebesgue measure of X.
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3 The Main Results

3.1 Some proprieties of the Cp(.),ω-capacity.

Theorem 2. Let’s consider the following propositions:
i) fn −→ f in W 1,p(x)(RN , ω).
ii) fn −→ f in Cp(.),ω − capacity.
iii) There exists a subsequence (fnj ) such that : fnj −→ f, Cp(.),ω − q.u.
iv) There exists a subsequence (fnj ) such that fnj −→ f, Cp(.),ω − q.e.
We have i)⇒ ii)⇒ iii)⇒ iv)

Proof. Let show that i)⇒ ii).
By (4 ) we have f and fn are finite for every n; Cp(.),ω − q.e.
Let ε > 0, we have

Cp(.),ω({x : |fn − f |(x) > ε}) 6 ρ1,p(.),ω(
fn − f
ε

).

Since fn −→ f in W 1,p(x)(RN , ω), then

(∀ε > 0) : ρ1,p(.),ω(
fn − f
ε

) −→ 0.

Therefore,
lim

n→+∞
Cp(.),ω({x : |fn − f |(x) > ε}) = 0.

Let show that ii)⇒ iii).
Let ε > 0 ∃ fnj such that Cp(.),ω({x : |fnj − f |(x) > 2−j}) < ε.2−j .
We put

Ej = {x : |fnj − f |(x) > 2−j} and Gm =
⋃
j>m

Ej ,

we have Cp(.),ω(Gm) 6
∑
j>m

ε.2−j < ε.

On the other hand,
(∀x ∈ (Gm)c) : |fnj − f |(x) 6 2−j , (∀j > m).

Thus
fnj −→ f Cp(.),ω − q.u.

Let show that iii)⇒ iv).

We have ∀j ∈ N,∃Xj : Cp(.),ω(Xj) 6
1

j
and fnj −→ f on (Xj)

c.

We put X =
⋂
j

Xj , then Cp(.),ω(X) = 0 and fnj −→ f on Xc.

Theorem 3. Let ω a positive measurable and finite function, such the condition (w1) holds. If
fn , f ∈W 1,p(x)(RN , ω) such that fn ⇀ f weakly in W 1,p(x)(RN , ω), then

lim inf(fn)(x) 6 f(x) 6 lim sup fn(x) Cp(.),ω − q.e.

Proof. W 1,p(x)(RN , ω) is reflexive. By the Banach-Saks theorem, there is a subsequence denoted

again (fn) such that the sequence; gn =
1

n

n∑
i=1

fi converge to f strongly in W 1,p(x)(RN , ω). By

theorem 2, there is a subsequence of (gn) denoted again (gn) such that

lim
n→+∞

gn(x) = f(x) Cp(.),ω − q.e.
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On the other hand,

lim inf fn(x) 6 lim
n→+∞

gn(x) .

Therefore,

lim inf
n→+∞

fn(x) 6 f(x) Cp(.),ω − q.e.

For the second inequality, it suffices to replace fn by (−fn) in the first inequality.

Theorem 4. Let p(.) ∈ P log(RN ), 1 < p− 6 p+ <∞, and ω ∈ Ap(.).
For each f ∈ W 1,p(x)(RN , ω), there is a Cp(.),ω-quasicontinuous function g ∈ W 1,p(x)(RN , ω)
such that f = g Cp(.),ω.q.e. The function g is called a Cp(.),ω-quasicontinuous representative of
the functionf .

Proof. Let f ∈ W 1,p(x)(RN , ω). By theorem 1, there exists a sequence (fn) in C∞0 (RN ) such
that fn −→ f in W 1,p(x)(RN , ω).
By theorem 2, there exists a subsequence of (fn) denoted again by (fn) such that fn −→
f Cϕ − q.u, and the proof is complete.

Theorem 5. Let 1 < p− 6 p+ <∞, we have
1) If O is an open set of RN and E ⊂ RN such that |E| = 0, then

Cp(.),ω(O) = Cp(.),ω(O \ E).

2) u and v are Cp(.),ω-quasicontinuous functions in RN , we have

i) if u = v, almost everywhere in an open set O ⊂ RN then u = v Cp(.),ω−quasieverywhere in O,

ii) if u 6 v, almost everywhere in an open set O ⊂ RN then u 6 v Cp(.),ω−quasieverywhere in O.

Proof. 1) It obvious that Cp(.),ω(O) > Cp(.),ω(O \ E). Let u ∈ Sp(.),ω(O \ E) thus u > 1 in an
open containing O \ E. Let the function f define as{

f(x) = u(x) , if x ∈ RN \ E
f(x) = 1 , if x ∈ E.

We have f ∈ Sp(.),ω(O) and ρ1,p(.),ω(f) = ρ1,p(.),ω(u), thus

Cp(.),ω(O) 6 ρ1,p(.),ω(u),

and by passing to inf we get Cp(.),ω(O) 6 Cp(.),ω(O \ E).
2) Since Cp(.),ω is an outer capacity we get the results by Kilpeläinen (1998).

Theorem 6. Let w(x) ≥ 1 for x ∈ RN . If (fn)n is a sequence which converge to f in
W 1,p(.)(Rn, ω), then there exists a subsequence of (fn)n which converge to f q.e and a.e.

Proof. If fn −→ f in W 1,p(x)(RN , ω), then by theorem 2 there exists a subsequence (fnj ) such
that fnj −→ f, Cp(.),ω − q.e.
Thus there exists a measurable subset E of RN such that fnj −→ f in Ec and Cp(.),ω(E) = 0.
By Lemma 3 we have |E| 6 Cp(.),ω(E), therefore fnj −→ f a.e.

Lemma 4. Let Ω be a open subset of RN . and T ∈ W−1,p′(x)(Ω, ω∗) ∩M(Ω), where M(Ω)
denote the set of Radon measures in Ω.
If X ⊂ Ω is such that Cp(.),ω(X) = 0, then X is |T | -measurable and |T |(X) = 0.

Proof. The same as in GRUN-Rehomme (1977) and Brezis & Browder (1982).
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3.2 A theorem of H. Brezis and F. Brower type in weighted variable
exponents Sobolev space

Let p(.) ∈ P log(RN ), 1 < p− 6 p+ <∞, ω(x) ≥ 1 and ω ∈ Ap(.).
In this section, we generalize the theorem of H Brezis and F.E. Browder Brezis & Browder
(1982) in the setting of the weighted variable exponents Sobolev space W 1,p(x)(Ω, ω).
Let Ω be a open subset of RN . In this section we study the following question: let u ∈
W

1,p(x)
0 (Ω, ω) and T ∈ W−1,p′(x)(Ω, ω∗) such that T = µ + h, where µ lies in M+(Ω) (the

subset of positive Radon measures) and h in L1
loc(Ω); find sufficient conditions on the data in

order for u to belong L1(Ω; dµ), for hu to belong to L1(Ω) and finally to have:

< T, u >=

∫
Ω
udµ+

∫
Ω
hudx.

This question was solved in Boccardo et al. (1990) in the case of the classical Sobolev spaces, in
Benkirane & Gossez (1994) when µ = 0 in the case of Orlicz Sobolev spaces, in Benkirane (1986)
in the case of Orlicz Sobolev spaces and in Hassib et al. (2017) in the case of Musielak-Orlicz
Sobolev spaces.

Theorem 7. Let Ω be a open subset of RN . Consider u ∈ W 1,p(x)
0 (Ω, ω), u > 0 a.e in Ω and

T ∈ W−1,p′(x)(Ω, ω∗) such that T = µ+ h, where µ lie in M+(Ω) (the subset of positive Radon
measures) and h ∈ L1

loc(Ω), assume that:

hu > −|Φ| a.e in Ω for some Φ in L1(Ω). (8)

Then:

hu ∈ L1(Ω), u ∈ L1(Ω; dµ) and < T, u >=

∫
Ω
udµ+

∫
Ω
hudx. (9)

Remark 3. Note that µ(X) = 0 for all X ⊂ Ω such that Cp(.),ω(X) = 0.
Indeed by lemma 4

|T |(X) = |µ+ h|(X) = 0,

but

0 6 µ(X) 6 |h|(X) + |µ+ h|(X) = 0.

Let prove the theorem 7.

Proof. Let u ∈W 1,p(x)
0 (Ω, ω), by Lemma 2 there exists a sequence un such that:

(i) un ∈W 1,p(x)
0 (Ω, ω) ∩ L∞(Ω),

(ii) supp un is compact,
(iii) |un| 6 |u| a.e. in Ω,

(v) un −→ u in W
1,p(x)
0 (Ω, ω).

(vi) unu > 0 a.e. in Ω .
Following the lines of Boccardo et al. (1990), it is easy to deduce that

< µ+ h, un >=

∫
Ω
undµ+

∫
Ω
hundx (10)

Since un −→ u in W
1,p(x)
0 (Ω, ω), by using the theorem6, Lemma4 and remark3 we have

un −→ u µ.a.e and a.e. in Ω. (11)
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We recall that by theorem 5, for any v ∈W 1,p(x)
0 (Ω, ω) one has

v > 0 a.e. in Ω⇔ v > 0 q.e. in Ω.

This equivalence, remark 3 and the fact (u > 0 a.e. in Ω), imply

un > 0 a.e. ; un > 0 µ.a.e. ; 0 6 un 6 u a.e. and 0 6 un 6 u µ.a.e. in Ω. (12)

On the other hand, from hu > −|Φ| and 0 6 un 6 u a.e. in Ω we have

hun > −|Φ| a.e.in Ω (13)

Since < µ + h, un > is bounded, (10 )and (12) imply

∫
Ω
hundx 6 cst; Similary (10 ) and (13 )

imply

∫
Ω
undµ 6 cst.

By using (11), (12), (13) and Fatou’s lemma we get hu ∈ L1(Ω) and u ∈ L1(Ω; dµ).
Using 0 6 un 6 u µ.a.e. in Ω and |hun| 6 |hu| a.e. in Ω, it is now easy to pass to the limit

in (10); we use the convergence of un to u in W
1,p(x)
0 (Ω, ω) for the left hand side and Lebesgue’s

dominated convergence theorem in each term of the right hand side: we obtain

< T, u >=

∫
Ω
udµ+

∫
Ω
hudx.

3.3 Application to unilateral problem

Let p(.) ∈ P log(RN ), 1 < p− 6 p+ <∞, ω(x) ≥ 1 and ω ∈ Ap(.).
Consider some right hand side f ∈W−1,p′(x)(Ω, ω∗) and the set

KΦ = {v ∈W 1,p(x)
0 (Ω, ω), v > Φ a.e in Ω}.

Where the obstacle Φ belong to W
1,p(x)
0 (Ω, ω) ∩ L∞(Ω).

The set KΦ is convex, indeed let v1 and v1 in KΦ and λ ∈ [0, 1], we have v1 > Φ and
v2 > Φ a.e in Ω then λv1 + (1− λ)v1 > Φ a.e in Ω, thus λv1 + (1− λ)v1 ∈ KΦ.

Let a pseudo-monotone mapping S from W
1,p(x)
0 (Ω, ω) into W−1,p′(x)(Ω, ω∗). which satisfies the

following conditions:

(1) S is continuous from each finite-dimensional subspace of W
1,p(x)
0 (Ω, ω) into W−1,p′(x)(Ω, ω∗)

for the weak∗ topology.
(2) S maps bounded sets into bounded sets.
(3) S is coercive, i.e that for some v0 in KΦ ∩ L∞(Ω)

< S(v), v − v0 >

||v||
W

1,p(x)
0 (Ω,ω)

−→ +∞ as ||v||
W

1,p(x)
0 (Ω,ω)

−→ +∞. (14)

Consider finally a Carathéodory function g : Ω× R −→ R witch satisfies :
(4) s.g(x, s) > 0, ∀ s ∈ R and a.e in Ω,
(5) ht = sup|s|6t|g(x, s)| ∈ L1(Ω), ∀t > 0.

Theorem 8. The variational inequality:

u ∈ KΦ, g(., u) ∈ L1(Ω), ug(., u) ∈ L1(Ω)

< Su, v − u > +

∫
Ω
g(., u)(v − u)dx > < f, v − u >, ∀v ∈ KΦ ∩ L∞(Ω)

has at least one solution.
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Proof. In the following we denote by C1, C2 and C3, positive constants.
First part Approximation and a priori istimates.

Define gn(x, s) =

 χΘn(x)g(x, s) if |g(x, s)| 6 n,

χΘn(x)n
g(x, s)

|g(x, s)|
if |g(x, s)| > n,

where χΘn is the characteristic function of the set Θn = {x ∈ Ω : |x| 6 n}
By using the proposition 1 of Gossez & Mustonen (1987) we have the approximate problem

 un ∈ KΦ,

< Sun, v − un > +

∫
Ω
gn(., un)(v − un)dx > < f, v − un >, ∀v ∈ KΦ ∩ L∞(Ω)

(15)

has at least one solution.
Using v = v0 as test function in (15) we get

< Sun, un − v0 > +

∫
Ω
gn(., un)(un − v0)dx 6 < f, un − v0 > . (16)

If (un) is not bonded in W
1,p(x)
0 (Ω, ω) then by the assumptions (3) we have

(∀A > 0)(∃n0 ∈ N)(∀n > no) : (
< S(un), un − v0 >

||un||W 1,p(x)
0 (Ω,ω)

> A) (17)

Let En = {x ∈ Ω : un(x) > 0}, by (16) and (17) we have for large n : A||un||W 1,p(x)
0 (Ω,ω)

+∫
En

gn(., un)(un − v0)dx+

∫
Ω−En

gn(., un)undx

6
∫

Ω−En
gn(., un)v0dx+ ||f ||W−1,p′(x)(Ω,ω∗)||un||W 1,p(x)

0 (Ω,ω)
+ ||f ||W−1,p′(x)(Ω,ω∗)||v0||W 1,p(x)

0 (Ω,ω)

Let Gn = {x ∈ Ω : un(x) > vo(x)} and l = sup(|v0|, |Φ|).
By the assumption (4) and (5) we have∫

En∩Gn
gn(., un)(un − v0)dx > 0,

∫
En∩Gcn

gn(., un)undx > 0,

∫
En∩Gcn

gn(., un)v0dx 6
∫

Ω
|h||l||L∞(Ω)

v0|,∫
Ω−En

gn(., un)undx > 0,∫
Ω−En

gn(., un)v0dx 6
∫

Ω
|h||Φ||L∞(Ω)

v0|.

Then we get

||un||W 1,p(x)
0 (Ω)

6 C1, ∀n > n0,

which is impossible, thus (un) is bounded in W
1,p(x)
0 (Ω).

It follows that there exists a subsequence, again denoted by un such that

un ⇀ u, weakly in W
1,p(x)
0 (Ω) and a.e. in Ω.
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Thus

gn(x, un(x)) −→ g(x, u(x)) a.e. in Ω.

From (16) we get ∫
Ω
gn(., un)(un − v0)dx 6 C2. (18)

We shall prove ∫
Ω
|gn(., un)(un − v0)|dx 6 C3.

Indeed

∫
Ω
|gn(., un)(un − v0)|dx =

∫
Gn∩En

gn(., un)(un − v0)dx−
∫
Gn∩Ecn

gn(., un)(un − v0)dx

−
∫
Gcn∩En

gn(., un)(un − v0)dx+

∫
Gcn∩Ecn

gn(., un)(un − v0)dx

6
∫

Ω
gn(., un)(un − v0)dx− 2

∫
Gn∩Ecn

gn(., un)(un − v0)dx

− 2

∫
Gcn∩En

gn(., un)(un − v0)dx

6 C2 + 2

∫
Gn∩Ecn

gn(., un)v0dx+ 2

∫
Gcn∩En

gn(., un)v0dx

6 C2 + 4

∫
Ω
|h||b||L∞v0|dx = C3,

(19)

where b = sup(|Φ|, |v0|).
In order to prove

gn(., un) −→ g(., u) in L1(Ω), (20)

let us observe that, for any δ > 0,

|gn(x, un(x))| 6 sup
|t|6δ−1+||v0||L∞

|g(., t)|+ δ|gn(x, un(x))(un(x)− v0(x))|,

and there fore, fore any measurable set E in Ω we have∫
E
|gn(., un)|dx 6

∫
E
|h 1

δ
+||v0||L∞ |+ δC3.

By Vitali’s theorem, we obtain (20).
Furthermore by (18) we have∫

Ω
gn(., un)undx 6 C2 +

∫
Ω
gn(., un)v0dx.

By Fatou’s lemma and (20), we get

0 6
∫

Ω
g(., u)udx 6 C2 +

∫
Ω
g(., u)v0dx.

Thus

g(., u)u ∈ L1(Ω).
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Second part : Passing to the limit in (15)
Let

µn = Sun − f + gn(., un).

From (15) it is clear that µn ∈ M+(Ω). Since S maps bounded sets of W
1,p(x)
0 (Ω, ω) in to

bounded sets of W
−1,p′(x)
0 (Ω, ω∗), then we can assume for the same sequence that

Sun ⇀ χ weakly in W
−1,p′(x)
0 (Ω, ω∗),

which implies that

µn −→ µ in D
′
(Ω),

where

µ = χ− f + g(., u).

We put η = u− Φ, h = −g(., u) and T = µ+ h.

The assumptions of theorem 7 are satisfied since T = χ− f ∈ W−1,p′(x)
0 (Ω, ω∗) and h ∈ L1(Ω).

Thus  u− Φ ∈ L1(Ω; dµ),

< χ− f, u− Φ >=

∫
Ω

(u− Φ)dµ−
∫

Ω
g(., u)(u− Φ)dx.

(21)

Using v = Φ as test function in (15 ) we get

< Sun, un > 6 < Sun,Φ > − < f,Φ− un > +

∫
Ω
gn(., un)(Φ− un),

which gives passing to the limit and then using (21)
limsupn < Sun, un > 6 < χ,Φ > − < f,Φ− u > +

∫
Ω
g(., u)(Φ− u)dx,

6 < χ, u > +

∫
Ω

(Φ− u)dµ 6 < χ, u >;
(22)

since, by theorem5 and remark 3 we have

(Φ− u) 6 0 µ.a.e. in Ω. (23)

Using (22 ) and since S is a pseudo - monotone operator, we obtain

χ = Su and < Sun, un >−→< Su, u > .

It is now easy to pass to the limit in (15) for any fixed v ∈ KΦ ∩ L∞(Ω).

4 Conclusion

In this work, we have stated and proved some properties of the capacity in the setting of the
weighted variable exponent Sobolev spaces. As an application, we generalized the theorem of
H Brezis and F.E. Browder in the setting of the weighted variable exponent Sobolev space, and
we applied these results in the study of a unilateral problem.
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